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Painlevéanalysis of the coupled nonlinear Schro¨dinger equation for polarized optical waves
in an isotropic medium

Q-Han Park* and H. J. Shin†

Department of Physics and Research Institute of Basic Sciences, Kyunghee University, Seoul 130-701, Korea
~Received 25 August 1998!

Using the Painleve´ analysis, we investigate the integrability properties of a system of two coupled nonlinear
Schrödinger equations that describe the propagation of orthogonally polarized optical waves in an isotropic
medium. Besides the well-known integrable vector nonlinear Schro¨dinger equation, we show that there exists
a set of equations passing the Painleve´ test where the self and cross phase modulational terms are of different
magnitude. We introduce the Hirota bilinearization and the Ba¨cklund transformation to obtain soliton solutions
and prove integrability by making a change of variables. The conditions on the third-order susceptibility tensor
x (3) imposed by these integrable equations are explained.@S1063-651X~99!05502-6#

PACS number~s!: 42.65.Tg, 42.81.Dp, 02.30.Jr, 41.20.Jb
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I. INTRODUCTION

The coupling between copropagating optical pulses i
nonlinear medium has led to many important applications
optical fiber systems such as optical switching and solit
dragging logic gates@1#. The governing equation for th
propagation of two orthogonally polarized pulses in a mo
mode birefringent fiber is given by the coupled nonline
Schrödinger ~NLS! equation, where the nonlinear couplin
terms are determined by the third-order susceptibility ten
x (3) of the fiber. In an isotropic medium, the tensorx (3) has
three independent componentsxxxyy

(3) ,xxyxy
(3) , and xxyyx

(3) and
the nonlinear polarization components that account for
nonlinear coupling terms take the form

Px5
3e0

2
†@~xxxyy

~3! 1xxyxy
~3! 1xxyyx

~3! !uExu21~xxxyy
~3!

1xxyxy
~3! !uEyu2#Ex1xxyyx

~3! Ey
2Ex* ‡,

~1!

Py5
3e0

2
@@~xxxyy

~3! 1xxyxy
~3! 1xxyyx

~3! !uEyu21~xxxyy
~3!

1xxyxy
~3! !uExu2#Ey1xxyyx

~3! Ex
2Ey* ‡.

In the case of silicar fibers,xxxyy
(3) 'xxyxy

(3) 'xxyyx
(3) and the non-

linear terms above have a ratio of 3:2:1. However, when
fiber is elliptically birefringent with the ellipticity angleu
'35°, and also the beat length due to birefrigence is m
smaller than the typical propagation distances, the coup
NLS equation takes the form of the vector NLS equation
nonlinear terms of which have a ratio of 1:1:0@2#, which is
known to be integrable via the inverse scattering meth
@3,4#. In general, the coupled NLS equations with arbitra
coefficients are not integrable. Mathematically, there exis
systematic way of generalizing the NLS equation to the m
ticomponent cases@5# and to the higher-order cases@6# using
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group theory which preserves the integrability structure. T
gives rise to various integrable, coupled NLS equatio
amongN scalar fieldsc i ; i 51, . . . ,N with specific set of
coupling parameters. ForN52, the vector NLS equation is
the only nontrivial integrable equation in the group theore
construction. However, it is not known whether there can
other cases of the integrable coupled NLS equation forN
52 with nonlinear coupling terms as in Eq.~1! except for
the vector NLS equation.

In this paper, using the Painleve´ analysis we investigate
the integrability properties of the coupled NLS equation r
evant to the propagation of orthogonally polarized opti
waves in an isotropic medium. Motivated by Eq.~1!, we
consider the general form of the coupled NLS equation s
that

i ]̄q15]2q11q1~g1uq1u21g2uq2u2!1g3q1* q2
21g4q1

2q2* ,
~2!

i ]̄q25b]2q21q2~g2uq1u21g1uq2u2!1g3q2* q1
21g4q2

2q1* ,

whereb561 signify the relative sign of the group-velocit
dispersion terms and we use the notation]5]/]z,]̄5]/] z̄.
We find that the system passes the Painleve´ test whenever
the parameters belong to one of the following four class
~i! b51,g15g2 ,g35g450, ~ii ! b51, g252g1 ,g35
2g1 ,g4arbitrary , ~iii ! b51,g252g1 ,g35g1 ,g450 and
~iv! b521,g152g2 ,g35g450. Case~i! @and ~iv!# is the
well-known vector NLS equation. The integrability of cas
~i! and~iv! have been demonstrated by Zakharov and Sch
man by deriving an appropriate inverse scattering formal
@4,7#. However, cases~ii ! and ~iii ! are new as far as we
know. In particular, case~ii ! corresponds to the propagatio
in the isotropic nonlinear medium with the property th
xxxyy

(3) 1xxyxy
(3) 522xxyyx

(3) . We find the Hirota bilinearization
and the Ba¨cklund transformation of cases~ii ! and ~iii !, and
compute soliton solutions. As for the integrability of cas
~ii ! and ~iii !, we prove that they are essentially identical
two independent NLS equations. This implies that in the c
~ii !, there are no physical interactions between two opti
pulses with opposite circular polarizations. We also sh
2373 ©1999 The American Physical Society
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2374 PRE 59Q-HAN PARK AND H. J. SHIN
that our Painleve´ analysis is consistent with the group the
retical method of generalizing the integrable NLS equatio
when the group theoretical method is combined with the
duction procedure.

II. PAINLEVE´ ANALYSIS OF THE COUPLED
NLS EQUATION

The Painleve´ analysis for a partial differential equatio
was first introduced by Weiss, Tabor, and Carnevale@8# who
defined that a partial differential equation has the Painl´
property if its general solution is single valued about t
movable singularity manifold. This method is to seek a
lution of a given differential equation in a series expansion
terms off(z,z̄)5z2c( z̄), wherec( z̄) is an arbitrary ana-
lytic function of z̄ andf50 defines a noncharacteristic mo
able singularity manifold. Then, the equation has the Pa
levé property, thus becomes integrable, if there exists
sufficient number of arbitrary functions in the series solutio
For b51, we postulate a solution of the form

q15 (
m>0

Rm~ z̄!~z2c!m2s,

q1* 5 (
m>0

Sm~ z̄!~z2c!m2s,

~3!

q25 (
m>0

Tm~ z̄!~z2c!m2s,

q2* 5 (
m>0

Um~ z̄!~z2c!m2s.

Substituting theseAnsätze into Eq. ~2! and looking at the
leading order behavior, we find thats51 and the following
equations should be satisfied:

g1U0
2T01g2R0S0U01g3S0

2T01g4U0
2R012U050,

g1T0
2U01g2R0S0T01g3R0

2U01g4T0
2S012T050,

~4!

g1R0
2S01g2R0T0U01g3T0

2S01g4R0
2U012R050,

g1S0
2R01g2S0T0U01g3U0

2R01g4S0
2T012S050.

In order to facilitate solving Eq.~4!, we define x
[U0R0 , y[T0S0 , t[R0S0 , s[U0T0 so that the first
two equations in Eq.~4! can be written as

g1s1g2t121g4x52g3

ty

x
,

~5!

g1s1g2t121g4y52g3

tx

y
,

while the last two as
s
-

e

-
n

-
a
.

g1t1g2s121g4x52g3

sy

x
,

~6!

g1t1g2s121g4y52g3

sx

y
.

Each pair can be combined to give (x2y)@g42g3t(x
1y)/xy#50, and (x2y)@g42g3s(x1y)/xy#50. One can
readily check that solutions of these equations can be cla
fied in seven different cases:

~case 1! x5y, g15g21g3 ,

~case 2! x5y, t5x,

~case 3! x5y, t52x,

~case 4! t5s, g45g3t
x1y

xy
,

~case 5! x52y, g450, g25g11g3 ,t1s522/g1,

~case 6! g35g450, s5t522/~g11g2!,

~case 7! g35g450, g15g2 , t1s522.

For each case, we check the powers, so called resona
at which the arbitrary functions can arise in the series so
tion. Equating coefficients of the (z2c) j 23 term in Eq.~2!
with the ansa¨tze in Eq.~3!, we obtain a system of four linea
algebraic equations in (Rj ,Sj ,Tj ,U j ) which are given in a
matrix form by

QjS Rj

Sj

Tj

U j

D 5S F j

Gj

H j

K j

D . ~7!

The 434 matrix

Qj5~ j 21!~ j 22!I 4341S Qj
~1! Qj

~2!

Qj
~3! Qj

~4!D
has block components:
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Qj
~1!5S 2g1R0S01g2T0U012g4R0U0 g1R0

21g3T0
2

g1S0
21g3U0

2 2g1R0S01g2T0U012g4S0T0
D ,

Qj
~2!5S g2R0U012g3T0S0 g2R0T01g4R0

2

g2S0U01g4S0
2 g2S0T012g3U0R0

D ,

~8!

Qj
~3!5S g2T0S012g3R0U0 g2R0T01g4T0

2

g2U0S01g4U0
2 g2R0U012g3T0S0

D ,

Qj
~4!5S 2g1T0U01g2R0S012g4S0T0 g1T0

21g3R0
2

g1U0
21g3S0

2 2g1T0U01g2R0S012g4U0R0
D ,
co
a

th

re-
nce

o

e

con-
and

F j[2 (
0< l ,m,n, j

l 1m1n5 j

~g1RlRmSn1g2RlTmUn1g3SlTmTn

1g4RlRmUn!1 iRj 228 2 i ~ j 22!c8Rj 21 ,

Gj[2 (
0< l ,m,n, j

l 1m1n5 j

~g1SlSmRn1g2SlUmTn1g3RlUmUn

1g4SlSmTn!2 iSj 228 1 i ~ j 22!c8Sj 21 ,
~9!

H j[2 (
0< l ,m,n, j

l 1m1n5 j

~g1TlTmUn1g2TlRmSn1g3UlRmRn

1g4TlTmSn!1 iT j 228 2 i ~ j 22!c8Tj 21 ,

K j[2 (
0< l ,m,n, j

l 1m1n5 j

~g1UlUmTn1g2UlSmRn1g3TlSmSn

1g4UlUmRn!2 iU j 228 1 i ~ j 22!c8U j 21 .

The resonances occur when detQj50. Now, we compute the
resonance values and check the Painleve´ property of Eq.~2!
for each seven cases as introduced above.

Case 1: x5y, g15g21g3 .

In this case, we can solve forT0 ,R0 such that

T05
22U0

g1~S0
21U0

2!1g4S0U0
, R05

22S0

g1~S0
21U0

2!1g4S0U0
.

~10!

When we substitute these solutions into the resonance
dition, detQj50, we find that the resonances do not occur
the integer values ofj. Therefore, this case does not pass
Painlevétest for integrability:

Case 2 and Case 3: x5y, t56x.

We have solutions

S056U05
22

g11g21g36g4

1

R0
, T056R0 , ~11!
n-
t
e

where1 and 2 sign correspond to case 2 and case 3,
spectively. Substituting these solutions into the resona
condition detQj50, we find that the resonance valuesj 5
21,0,1,1,2,2,3,4 occur wheng252g1 ,g356g41g1 . The
resonancej 521 is related with the arbitrariness ofc, while
the resonancej 50 is related with the arbitrariness ofR0 .
The recursion relation in Eq.~7! determinesR1 ,S1 ,T1 ,U1 in
terms ofR0 ,S0 ,T0 ,U0 ,c. The degree of multiplicity of the
resonancej 51 is two and it turns out that there exist tw
arbitrary functions consistently only ifg450. Therefore, the
case whereg252g1 ,g35g1 andg450 passes the Painlev´
test:

Case 4: t5s, g4xy5g3t„x1y….

Equation ~4! together with the conditiont5s, g4xy
5g3t(x1y) results in

t5
22

g11g22g31~g4
2/g3!

, x5S g4

2g3
6A~g4/2g3!221D t,

~12!

and

S05
t2

x

1

T0
, U05

t

T0
, R05

x

t
T0 . ~13!

When we substitute these solutions into the resonance
dition detQj50, we obtain

~ j 24!~ j 23! j ~ j 11!S j 223 j 12
g4

224g3
2

g4
22g3

21g2g31g3g1
D

3S j 223 j 12
g4

222g3
212g2g322g1g3

g4
22g3

21g2g31g1g3
D 50. ~14!

Note that the Painleve´ test requires the resonancesj to be
integers and the degeneracy of resonance atj 50 to be one
since there is only one arbitrary functionT0 as in Eq.~13!.
This requirement leads to the result,g252g1 ,g352g1 and
g4 arbitrary, so that resonances arej 521,0,1,1,2,2,3,4. The
recursion relation in Eq.~7! determinesT1 ,U1 ,T2 ,U2 such
as
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T15 1
4 ~Ag4

2242g4!~2R11 iAg4
224T0cx!,

U152 1
2 ~Ag4

2241g4!S S11
i

Ag4
224

cx

T0
D ,

~15!

T25 1
2 ~Ag4

2242g4!FR21
Ag4

224

12 S T0cx
212i

]T0

]x D G ,

U25 1
12 ~Ag4

2241g4!F26S21
i

Ag4
224

S cx
2

T0
12i

1

T0
2

]T0

]x D G .

Similarly, R3 ,T3 ,U3 are determined in terms o
c,T0 ,R1 ,S1 ,R2 ,S2 . In the same way, we can check th
there exists one arbitrary function at thej 54 resonance and
no more arbitrary functions in higher levels. All these fac
have been confirmed with the symbolic manipulation p
gram MACSYMA. Thus, the system passes the Painleve´ test
when g252g1 ,g352g1 and g4 arbitrary. We show that
this case is indeed integrable in Sec. III.

Case 5: x52y, g450; g25g11g3 , t1s522/g1 .

In this case, the resonances are atj 521,0,0,3,3,4,32
6A9116g3/g1, which in turn requires that g15
22g3 , g252g3 . But inconsistency among the fou
equations in Eq.~7! arises at thej 52 level, so that the Pain
levé test fails.

Case 6: g35g450, s5t522/„g11g2….

The resonance condition detQj50, leads to the following
solutions:

j 521,0,0,3,3,4,32 6
1

2~g11g2!
A25g1

2118g1g227g2
2.

~16!

The integer resonances occur if~i! g253g1 , or ~ii ! g25
2g1 . The first case~i! leads to inconsistencies among fo
equations in Eq.~7! at j 52, while the second case~ii ! simi-
larly leads to inconsistency atj 50. Therefore, the Painlev´
test fails in this case.

Case 7: g35g450, g15g2 , t1s522.

This case corresponds to the well-known integrable ve
NLS equation considered by Zakharov and Schulman@4#.
Together with the parameters;g15g2 ,g35g450, Eq. ~4!
reduces to

21g1~T0U01R0S0!50. ~17!

The resonances arej 521,0,0,0,3,3,3,4, and it has bee
checked that the proper number of arbitrary functions ex
Thus, this case passes the Painleve´ test.

So far, we have considered the case whereb51 in Eq.
~2!. For b521, using the notion of the degenerate disp
sion law, Zakharov and Schulmann found another integra
-

r

t.

-
le

theory with anomalous dispersive term@7#. The Painleve´
analysis for theb521 case can be done in the same way
for the b51 case. Thus, we suppress the details of anal
and simply state the results. The leading order equatio
given by

g1s1g2t221g4x52g3

ty

x
,

g1s1g2t221g4y52g3

tx

y
,

~18!

g1t1g2s121g4x52g3

sy

x
,

g1t1g2s121g4y52g3

sx

y
,

the solutions of which can be grouped into five distin
cases:

~case 1! x5y,

~case 2! g450, x52y, g35g11g2 ,

~case 3! g450, x52y, t52s,

~case 4! g35g450, g152g2 ,

~case 5! g35g450, t52s.

Here, only case 4 passes the Painleve´ test. In this case,
S5(T0U022)/R0 and resonances arej 521,0,0,0,3,3,3,4.
This is the integrable system found by Zakharov and Sch
mann @4#. All other cases lead to inconsistencies atj 51
level thus failing the Painleve´ test.

III. HIROTA BILINEARIZATION AND SOLITONS

One of the main results of the Painleve´ test is to find a
new case of coupled NLS equation in Eq.~2! with param-
eters given byg252g1 ,g352g1 andg4 arbitrary. With an
appropriate scaling, we can always set the nonzerog1 to one.
Also, as we show in Sec. IV, we can setg4 to zero. From
now on, we restrict ourselves to the case (b51,g151,g2
52,g3521,g450) and analyze its solution and integrab
ity structures. It is well known that the Painleve´ analysis in
the preceding section can be related to the Ba¨cklund trans-
formation ~BT!. In order to derive the BT, we truncate th
series in Eq.~3! up to a constant level term and substitu
(z2c) by an arbitrary functionf(z,z̄) to be determined
later. Then, the corresponding BT is given by

q15
R0

f
1R1 , q25

T0

f
1T1 , ~19!

where the set (R1 ,T1) is a known solution of the coupled
NLS equations, which we assume to be the trivial solut
R15T150. In order for the new set (q1 ,q2) to be also a
solution, the following equations should hold@9#
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ifD̄R0f5 ifD2R0f2R0D2ff1R0
2R0*

12R0T0T0* 2R0* T0
2 ,

~20!
ifD̄T0f5 ifD2T0f2T0D2ff1T0

2T0*

12T0R0R0* 2T0* R0
2 ,

Here, Hirota’s bilinearsD and D̄ are defined by

D̄nDmf g5S ]

] z̄
2

]

] z̄8
D nS ]

]z
2

]

]z8
D m

f ~z,z̄!g~z8,z̄8!uz5z8
z̄5 z̄8

.

~21!

Equation~20! can be decoupled as

R0D2ff2~g1R0
2R0* 1g2R0T0T0* 1g3R0* T0

2!5l1R0ff,

T0D2ff2~g1T0
2T0* 1g2T0R0R0* 1g3T0* R0

2!5l2T0ff,
~22!

iD̄R0f5D2R0f2l1R0f,

iD̄ T0f5D2T0f2l2T0f.

Now, explicit N solitons can be constructed in the usual w
by solvingf,R0 ,T0 in terms of power series.

A. One-soliton

For one soliton solution, we choosel15l250 and as-
sume solutions in a series form ine such that f51
1e2h, R05eR, T05eT. Then, by equating the coeffi
cients of the polynomials to zero in Eq.~22! and solving
them explicitly, we obtain

R5a exp@ i ~a22b2!z̄12abz̄1 iaz1bz#,
~23!

T5b exp@ i ~a22b2!z̄12abz̄1 iaz1bz#,

where a,b are arbitrary complex numbers whilea,b are
arbitrary real numbers.h is also obtained by solving th
third-order equation such that

h5
1

8b2S uau212ubu22
a* b2

a Dexp~2bz14abz̄!. ~24!

Consistency requires that phases of the complex numbea
andb should be either the same, or differ byp/2. In the case
of the same phase, we parameterizea andb by

a5A8b coskeD1 iu, b5A8b sinkeD1 iu, ~25!

in terms of arbitrary real numbersk,u,D. Then, the final
form of the one soliton solution is given by substitutinge
51 in Eq. ~19! such that

q15A2b coskei ~a22b2!z̄1 iaz1 iu sech~bz12abz̄1D!,
~26!

q25A2b sinkei ~a22b2!z̄1 iaz1 iu sech~bz12abz̄1D!.

In the case where phases differ byp/2, a andb are given
by
b56 ia56 iA8beD1 iu. ~27!

Then, the corresponding one-soliton solution is

q15A2bei ~a22b2!z̄1 iaz1 iu sech~bz12abz̄1D!,
~28!

q256 iA2bei ~a22b2!z̄1 iaz1 iu sech~bz12abz̄1D!.

B. Two-soliton

The two-soliton solution can be obtained using the se
expansion f511e2h11e4h2 , R05er11e3r2 , T0
5et11e3t2 . Inserting these ansa¨tze into Eq.~22!, we ob-
tain solutions

r15 f 1g, t15 ir1 ; f [e2 ik2z̄1kz1h f , g[e2 i l 2z̄1 lz1hg,
~29!

h152S f f *

~k1k* !2 1
f g*

~k1 l * !2 1
g f*

~ l 1k* !2 1
gg*

~ l 1 l * !2D ,

wherek,l ,h f ,hg are arbitrary complex numbers. Also, aft
a lengthy but straightforward calculation we obtain

r252~ l 2k!2S f f * g

~k1k* !2~ l 1k* !2

1
f gg*

~k1 l * !2~ l 1 l * !2D , t25 ir2 ,

~30!

h25
4~ l 2k!2~ l * 2k* !2f f * gg*

~k1k* !2~ l 1k* !2~k1 l * !2~ l 1 l * !2 .

Finally, the two-soliton solution is obtained by takinge51
in the BT equationq15R0 /f,q25T0 /f.

Surprisingly, there exists a different type two-soliton s
lution that can be obtained by a simple linear superposit
of the left-polarized one-soliton with the right-polarized on
soliton;

q15
f

f1
1

g

f2
, q25 i

f

f1
2 i

g

f2
, ~31!

where f15112f f * /(k1k* )2,f25112gg* /( l 1 l * )2. The
reason underlying the existence of such a linear superp
tion is explained in the following section.

IV. INTEGRABILITY

The Painleve´ test in Sec. II suggests new integrable cas
of coupled NLS equations. As we have shown in the prec
ing section, the coupled NLS equation withg151,g2
52,g3521,g450 possesses exact soliton solutions, wh
reflects the integrability of the equation. Before proving t
integrability by deriving the corresponding Lax pair, we fir
note that takingg450 is not essential. Make a change
variables such that

Q15xq11yq2 , Q25yq11xq2 . ~32!

If ( Q1 ,Q2) satisfy the coupled NLS equation in Eq.~2! with
g151,g252,g3521,g450, then (q1 ,q2) satisfy Eq. ~2!
but with parametersg151,g252,g3521,g454xy/(x2
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1y2). Thus, we setg4 to zero without loss of generality
The integrability and the Lax pair of the coupled NLS equ
tion in Eq. ~2! with g151,g252,g3561,g450 follows
from the observation that these equations can be embe
in the integrable coupled NLS equation based on the s
metric space Sp~2!/U~2! given by @10#

i ]̄c15@]2c112c1
2c1* 14c1c2c2* 12c2

2c3* #,

i ]̄c25@]2c212c2c1c1* 12c2
2c2* 12c3c1c2*

12c3c2c3* #, ~33!

i ]̄c35@]2c312c3
2c3* 14c3c2c2* 12c2

2c1* #.

Consistent reductions can be made if we takec156c3 ,
which are precisely the casesg152,g254,g3562,g450
in Eq. ~2!. Furthermore, Eq.~33! arises from the Lax pair

LzC[@]1E1lT#C50,
~34!

Lz̄C[@]̄1~ 1
2 @E, Ẽ#2]Ẽ!2lE2l2T#C50,

where the 434 matricesE andT are

E5S 0 0 c1 c2

0 0 c2 c3

2c1* 2c2* 0 0

2c2* 2c3* 0 0

D ,

~35!

T5S i /2 0 0 0

0 i /2 0 0

0 0 2 i /2 0

0 0 0 2 i /2

D .

By takingc156c3 in Eqs.~34! and~35!, we obtain the Lax
pair for the coupled NLS equation in Eq.~2! with g152,g2
54,g3562,g450.

More directly, the integrability can be shown by mappi
the coupled NLS equation into two independent~decoupled!
NLS equations as follows; if we substitute

C15q11 iq2 , C25q12 iq2 , ~36!

in the two independent NLS equations,i ]̄Ck5]2Ck
12uCku2Ck ;k51,2, we recover Eq.~2! with g152,g2
54,g3522,g450. Similarly using the substitutionC1
5q11q2 ,C25q12q2 , we obtain Eq.~2! with g152,g2
54,g352,g450. This explains why the linear superpositio
of two solitons was possible in the previous section. T
decomposition of the coupled NLS equation into two ind
pendent NLS equations implies that the linear combinat
of solutions according to Eq.~36! becomes a solution of th
coupled NLS equation. Group theoretically, such a deco
position corresponds to the embedding of symmetric spa
@SU(2)/U(1)#3@SU(2)/U(1)#,Sp(2)/U(2).According to
the group theoretic construction of the NLS equation us
Hermitian symmetric spaces@14#, the above embedding re
sults in two decoupled NLS equations. It is interesting to
-

ed
-

e
-
n

-
s,

g

e

that this decoupling behavior is also reflected in the Painl´
analysis. Besides the solution of the leading order equa
~4! ~case 4 in Sec. II! which enables the present coupled NL
equation to pass the Painleve´ test, for the set of parameter
g252g1 ,g352g1 , we have another set of solutions of th
leading order equation~4!,

U05
22T0

T0
21R0

2 , S05
22R0

T0
21R0

2 . ~37!

This has resonances atj 521,21,0,0,3,3,4,4. This solution
also passes the test. Note that all resonances are double
and each poles are precisely those of the NLS equation.
suggests that the systems under consideration are indeed
independent NLS systems.

So far, we have restricted to the caseb51. For b521,
our Painleve´ analysis showed that the only integrable case
the vector NLS equation considered by Zakharov and Sc
mann,

i ]̄C5]2C1CjC, 2 i ]̄j5]2j1jCj, ~38!

whereC5(c1 ,c2) andj5(x1 ,x2). Using the reductionj
5C* A with A5( 0

21) (1
0) and substituting q15c1 ,q2

5c2* , one can recover the vector NLS equation as in Eq.~2!
with b521,g152g2 ,g35g450.

In a similar vein, we construct a new integrable equat
with b521 that resembles the previous decoupling N
equation withb51. We take

M5S x1 x2

x2 2x1
D , N5S 2x1* x2*

x2* x1*
D , ~39!

and define the coupled NLS equation by

i ]̄M5]2M22MNM,
~40!

2 i ]̄N5]2N22NMN.

We find that Eq.~40! arises from the Lax pair (@Lz ,Lz̄#
50),

Lz5]1S 0 M

N 0 D 1 i
l

2S I 232 0

0 2I 232
D ,

~41!

Lz̄5 ]̄2 i S 0 ]M

2]N 0 D 2 i S MN 0

0 2NMD 2lS 0 M

N 0 D
2

i

2
l2S I 232 0

0 2I 232
D .

If we substituteq15x1 ,q25x2* , we have an integrable
equation with anomalous dispersion term and asymme
coupling,

i ]̄q15]2q112~ uq1u2q122uq2u2q12q2*
2q1* !,

~42!
i ]̄q252]2q212~ uq2u2q222uq1u2q22q1*

2q2* !.

This equation does not belong to the coupled NLS equa
in Eq. ~2!, which has been Painleve´ tested.
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V. DISCUSSION

In this paper, we have performed a Painleve´ analysis for
coupled NLS equations with coherent coupling terms
given in Eq.~2!. Besides the well-known vector NLS equ
tion (b561;g256g1 ,g35g450), we have found inte-
grable cases that are defined by the set of parameters
b51; ~i! g252g1 ,g352g1 ,g4 arbitrary, or ~ii ! g2
52g1 ,g35g1 ,g450. Painleve´ analysis shows that these a
the only integrable cases except the vector NLS equat
We have shown that these equations are essentially iden
to two independent sets of NLS equations. Physically,
first case describes the propagation of optical pulses in
isotropic nonlinear medium in which the third-order susce
tibility tensor satisfies thatxxxyy

(3) 1xxyxy
(3) 522xxyyx

(3) , while
the second case does not have a similar interpretation.
linear transformation in Eq.~36!, which decouples the inter
acting NLS equation@case~i!# into two independent NLS
,

th
.

s

ith

n.
cal
e
n
-

he

equations, also maps two orthogonal linearly polarized lig
into the left and the right circularly polarized lights. Thus,
such an isotropic medium, left and right circularly polariz
lights do not interact each other thereby preserving circu
polarizations. This case may be compared with a polariza
preserving fiber where only one particular polarization dire
tion is preserved. It would be interesting to know wheth
there exists nonlinear isotropic materials possessing
property.
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